with PMA and ionomycin, CD4+ T cells from LATY136Fm/m mice produced large amounts of IL-4 relative to CD4+ T cells from heterozygous knock-in or LAT+/−/− mice (Fig. 2B). Consistent with the Th2 cytokine profile, serum concentrations of immunoglobulins of IL-4 relative to CD4+ T cells, and D. El Khoury for technical assistance.

The in vivo effects of a defined point mutation in LAT reveal a role for the PLCγ1–calcium signaling pathway in early T cell development. Calcium signaling is important for setting the threshold for negative selection in the thymus (19, 20). Thus, in LATY136Fm/m mice, thymocytes that normally would be eliminated by negative selection may survive and populate the periphery. These cells may differ from normal T cells in their requirement for PLC-γ1 for Ras-Erk activation. In this regard, it is notable that PLC-γ1–DAG independent activation of Ras has been described in peripheral blood–derived T cells (21) and that the LAT132YF mutant protein retains the ability to recruit Grb2 together with the Ras guanine nucleotide exchange factor Sos after TCR stimulation (3–5). Alternatively, the low levels of catalytically active PLC-γ1 generated in LAT132YFm/m T cells may be sufficient to activate Ras-GRP or protein kinase C, resulting in Ras-Erk activation. The profound disturbance in T cell homeostasis caused by the selective loss of PLC-γ1–mediated signaling but not Erk signaling in LATY136Fm/m mice further demonstrates a critical role for LAT in integrating signaling downstream of the TCR.

References and Notes

8. Materials and methods are available as supporting material on Science Online.
9. C. L. Sommers et al., unpublished observations.

Despite extensive research, the role of the cerebellum in learning motor skills remains controversial (1, 2). The concept of the cerebellum as a learning machine comes from the theoretical work of Marr (3) and Albus (4) and has been supported by data showing that it is essential for adaptive modification of reflex behavior (5, 6) and is activated during motor learning (7–9). However, learning invariably leads to changes in motor performance, which in itself can activate the cerebellum (10, 11). Previous efforts to deal with the issue of learning versus performance have required complex behavioral manipulations, such as subtracting an estimate of the performance effect (9). Here, we present a learning paradigm in which learning and performance change are effectively dissociated, using a modification of the serial reaction time task (12, 13). Typically, participants learn the sequence embedded in the serial reaction time task within a few hundred trials. However, when asked to perform the task concomitantly with certain distractor tasks, they show no evidence of sequence learning (14). When tested upon removal of this distractor, it is evident that participants did actually learn the sequence during the initial training. Therefore, the distractor task served only to suppress performance change but did not prevent learning, allowing the determination of the underlying neural substrates for sequence learning separately from performance.

We obtained high-field (4 T) functional magnetic resonance imaging (fMRI) images of the cerebellum (15, 16) in participants performing the modified serial reaction time task. Participants (n = 6) pressed one of four buttons with the right hand when instructed by a visual display. Trials were presented in blocks in which the lights were illuminated either randomly or on the basis of a 12-1 element-repeating sequence. During the encoding phase, participants performed the sequence task concurrently with a distractor task, whereas for the expression phase the distractor was absent. Finally, participants were probed for their awareness of the existence of the sequence with a questionnaire and then asked to perform a free recall task. During the encoding phase, there were no

Cerebellum Activation

Associated with Performance Change but Not Motor Learning

R. D. Seidler,1,2* A. Purushotham,3 S.-G. Kim,3 K. Uğurbil,3 D. Willingham,4 J. Ashe1,2†

The issue of whether the cerebellum contributes to motor skill learning is controversial, principally because of the difficulty of separating the effects of motor learning from changes in performance. We performed a functional magnetic resonance imaging investigation during an implicit, motor sequence-learning task that was designed to separate these two processes. During the sequence-encoding phase, human participants performed a concurrent distractor task that served to suppress the performance changes associated with learning. Upon removal of the distractor, participants showed evidence of having learned. No cerebellar activation was associated with the learning phase, despite extensive involvement of other cortical and subcortical regions. There was, however, significant cerebellar activation during the expression of learning; thus, the cerebellum does not contribute to learning of the motor skill itself but is engaged primarily in the modification of performance.

1Brain Sciences Center (11B), Veterans Affairs Medical Center, Minneapolis, MN 55417, USA. 2Department of Neuroscience, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA. 3Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street, Minneapolis, MN 55455, USA. 4Department of Psychology, University of Virginia, Gilmer 102, Post Office Box 400400, Charlottesville, VA 22904, USA.
*Present address: Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
†To whom correspondence should be addressed. E-mail: ashe@umn.edu

Supporting Online Material

www.sciencemag.org/cgi/content/full/296/5575/2040/DC1
Materials and Methods
Figs. S1 to S6
17 December 2001; accepted 23 April 2002
changes in performance either on the basis of response time (RT) or in the number of errors across the four blocks with the repeating sequence (Fig. 1, $P > 0.1$). Despite the absence of performance changes, however, participants did learn the sequence, as shown by the savings in response time and errors during the sequence as compared to the random presentation observed during the expression phase ($P < 0.01$ for response time, $P < 0.05$ for errors). In addition, there was a savings in performance during block 8 (sequence performance upon expression) compared to the average of blocks 2 through 5 (sequence performance during encoding, $P < 0.01$ for RT, $P < 0.05$ for errors). This comparison validated the performance-inhibiting effects of the distractor. Sequence learning was implicit, because the participants could only recall, on average, 3.6 of the 12 sequence elements (17). One might argue that the participants learned the sequence during the one block of trials to which they were exposed without the distractor; however, it has already been shown that this does not occur in this paradigm (17).

Functional imaging data were analyzed separately (i) for the encoding phase and (ii) for the expression phase (18–21). We tested two separate models of learning-related activity across the sequence-encoding blocks, based on the assumption that learning-related activity could be either early or late (22, 23). The first model assumed that activity was initially high for the sequence scans as compared to the control period and then diminished across the remaining sequence blocks. The second model assumed that there was an increasing difference between the task and control periods across sequence blocks. Both models were tested with linear and exponential functions, because learning processes may conform to either function (24). During the encoding phase, learning-related activity was documented in the parietal, prefrontal, and motor cortex, as well as in the thalamus (25, 26) (Table 1). We detected no activation in the cerebellum during the encoding phase with any of the models (27). By contrast, we found prominent activation in the cerebellum during the expression of learning, as assessed by comparing the difference between task and control periods in the sequence block with that of the two random blocks during the expression phase (28). The active sites were in bilateral lobule VI (Fig. 2A and Table 2). The time course of activation during the expression of learning (Fig. 2B) was the inverse of the performance data shown in Fig. 1. Correlations between individual differences in response time savings and the intensity of activation were significant for sites within the cerebellum that overlapped with those observed from the expression contrast. This correlation analysis further validated the idea that the activation of the cerebellum during the expression of learning was related to an individual’s behavioral performance.

In the current experiment, the use of a visual distractor task effectively separated the process of motor skill acquisition from its expression. Thus far, the only work to successfully separate learning from expression, in investigations of cerebellar function, is that examining the acquisition and expression of the conditioned eyeblink response in animals (29). Therefore, although it appears that the cerebellum may mediate some types of learning such as eyeblink.

Fig. 1. Temporal separation of learning and expression. (A) Response time data (mean and SD values). It can be seen that there was no change in response time for repeated sequence presentations during concurrent performance of the distractor task. There was a response time advantage for the sequence block once the distractor had been removed. (B) Number of errors made for each block. The pattern of results is the same as in (A).

Fig. 2. Cerebellar activation during expression of learning. (A) Areas of activation for the expression of learning contrast (left) and for the regression with individual participants’ response time savings (right). The peak of activation was in bilateral lobule VI for both contrasts. (B) Changes in activation averaged across these areas for the encoding and expression blocks. The activation was computed as the average amplitude during the control period subtracted from that during the task period of each block, for the clusters activated in (A) (bars reflect the standard error). There was no change in activation until the expression blocks.
conditioning (30), our data indicate that, during the acquisition of a motor skill, the cerebellum does not contribute to sequence learning per se but rather to its expression.

It is not entirely clear how the cerebellum contributes to improvement in performance, and the current experiment did not address this issue. There are, however, a number of possible explanations, including improved coordination of movement timing (31) and enhanced motor planning (32). Ample evidence underscores the importance of the cerebellum for the modulation of response time. Both lesions of the cerebellum in patients (33) lead to delays in response time and in movement initiation. Oth- er imaging studies have found a negative association between blood flow in the cerebellum and response time (32). Collectively, these results suggest that the cerebellum plays a critical role in motor response facilitation, which is manifested in the present experiment by the improvement in performance seen during the expression phase.

References and Notes
13. Participants performed the serial reaction time task as follows: Four stimulus boxes (each side, 1.2 cm) were displayed in a horizontal arrangement at the center of a projection screen, visible to the partici- pant via a mirror. Each box was associated with one of the four fingers of the right hand; illumination of the box indicated the finger to be moved. Participants used a key-press device to respond as quickly as possible when instructed by the visual display. Stim- uli were presented blockwise in either a repeating 12-element sequence or in a pseudorandom fashion. In order to prevent sequence awareness, the se- quence was constrained as in (17), so that the same element did not appear twice in a row, there were no runs of four (1234) and no trills (1212), and each stimulus appeared three times. The random presen- tation was likewise constrained.
14. Sequence acquisition blocks were performed concur- rently with a distractor task requiring participants to monitor the number of times a specific color ap- peared in a square (each side, 1.8 cm) that changed color at a rate of 3 Hz and to report the number at the end of each block. This square was centered 0.5 cm above the stimulus boxes. Three to seven targets appeared per block. Blocks 1 through 6 were per- formed concurrently with the distractor in the fol- lowing order: random, sequence, sequence, sequence, random. Blocks 7 through 9 were per- formed without the distractor task with random, sequence, random presentations. Participants were 94 to 100% accurate at performing the distractor task. Each block consisted of 94 trials with an 800 ms interstimulus interval. Median reaction times were computed for each participant and averaged across participants.
15. The experiment was conducted in a 4-T magnet using an open-face volume coil (16). Functional images were acquired using single-shot gradient-echo echo plan imaging. The field of view was 220 mm by 220 mm; voxel size was 3.4 mm by 3.4 mm by 5 mm, repeat time = 3.38 s, echo time (TE) = 35 ms. The entire brain, including the cerebellum, was imaged for a total of 26 slices. A total of 31 volumes was collected for each block: 3 dummy scans, 7 control scans, and 21 task scans. Participants simply viewed the unit light-emitting diodes (LEDs) during the con- trol period. Structural images were acquired with a fast low-angled shot. The field of view was 240 mm by 240 mm; voxel size was 0.86 mm by 0.86 mm by 5 mm, TE = 4.3 ms, 26 slices.
18. Statistical Parametric Mapping 99 was used for image analysis [Welcome Department of Cognitive Neuro- logy, London, UK (19)] in the Matlab environment. The functional images were realigned to the first one within the set. The data were examined to ensure that participants did not move more than 2 mm during the experiment. A mean functional image for each participant was also computed at this time. The structural image was then coregistered to this mean and spatially normalized to the Montreal Neurologi- cal Institute (MNI) template (20). The resulting parameters were applied to each participant's func- tional images, which were then smoothed with a Gaussian smoothing kernel with a full width at half maximum of 6 mm.
21. Data were analyzed for the whole brain. In this report, we concentrate on the cerebellum as the region of interest. One analysis was performed over the first four sequence blocks (blocks 2 through 5). The data were modeled as boxcar functions time- locked to the effect of interest and were convolved with an estimate of the hemodynamic response func- tion. To assess sequence encoding, an activation mask with P < 0.05 was first computed to reveal the voxels that showed significant activation during the task as compared to the control. Then we performed two different contrasts (P < 0.001) at the individual participant level, created to capture changes occur- ring across the four blocks, masked by the activation map. One contrast searched for activation that was initially high for the task period as compared to the control (such as strong activation in block 2) that then progressively decreased across the remaining sequence blocks (blocks 3 through 5), reflecting early learning processes. The second contrast searched for longitudinally increasing activation across the four sequence blocks, reflecting later learning processes. Individual participant data were then combined in a random effects analysis. The results of the analysis at the group level were evident in the analysis of each of the individual participants, both for the encoding and expression models.

Table 1. Coordinates of local maxima for the areas showing learning-related activation during sequence encoding. R is right hemisphere; L is left hemisphere; PM refers to premotor; BA, Brodmann area.

<table>
<thead>
<tr>
<th>Area activated</th>
<th>Coordinates of peak activation</th>
<th>Z score of peak activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premotor cortex</td>
<td>L BA 6 (ventral PM cortex)</td>
<td>−58, 6, 18</td>
</tr>
<tr>
<td>Motor cortex</td>
<td>L BA 4</td>
<td>−38, −16, 50</td>
</tr>
<tr>
<td>Prefrontal cortex</td>
<td>R BA 9</td>
<td>46, 8, 36</td>
</tr>
<tr>
<td>Cingulate cortex</td>
<td>R BA 24/32</td>
<td>8, 30, 24</td>
</tr>
<tr>
<td>Parietal cortex</td>
<td>L BA 7</td>
<td>−20, −48, 44</td>
</tr>
<tr>
<td></td>
<td>R BA 40</td>
<td>−32, −36, 56</td>
</tr>
<tr>
<td></td>
<td>R BA 40</td>
<td>48, −38, 54</td>
</tr>
<tr>
<td>Subcortical activation</td>
<td>R thalamus</td>
<td>28, −32, 2</td>
</tr>
<tr>
<td></td>
<td>R thalamus</td>
<td>20, −26, 12</td>
</tr>
</tbody>
</table>

Table 2. Coordinates of local maxima for the cerebellar areas activated at expression of learning and for those correlated with individual differences in response time savings.

<table>
<thead>
<tr>
<th>Area activated at expression of learning</th>
<th>Coordinates of peak activation</th>
<th>Z score of peak activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellar cortex</td>
<td>L lobule VI</td>
<td>−28, −76, −22</td>
</tr>
<tr>
<td></td>
<td>R lobule VI</td>
<td>20, −74, −26</td>
</tr>
<tr>
<td>Areas correlated with response time savings across participants</td>
<td>L lobule VI</td>
<td>−30, −76, −22</td>
</tr>
<tr>
<td></td>
<td>R lobule VI</td>
<td>16, −76, −24</td>
</tr>
</tbody>
</table>
TRPs belong to a large family of nonselective cation channels that function in a variety of processes, including temperature sensation (1, 2). Vanilloid receptor 1 (TRPV1), also called VR-1) is activated by noxious heat (>42°C) (3). TRPV2 (VRL-1) is also activated by heat, but with a higher threshold (>50°C), whereas TRPM8 (CMR1) is induced by cool/cold temperatures (<25°C) (4–6). A receptor for innocuous warmth temperatures has not been identified. Also, the unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.

Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.